A segmentation editing framework based on shape change statistics
نویسندگان
چکیده
Segmentation is a key task in medical image analysis because its accuracy significantly affects successive steps. Automatic segmentation methods often produce inadequate segmentations, which require the user to manually edit the produced segmentation slice by slice. Because editing is time-consuming, an editing tool that enables the user to produce accurate segmentations by only drawing a sparse set of contours would be needed. This paper describes such a framework as applied to a single object. Constrained by the additional information enabled by the manually segmented contours, the proposed framework utilizes object shape statistics to transform the failed automatic segmentation to a more accurate version. Instead of modeling the object shape, the proposed framework utilizes shape change statistics that were generated to capture the object deformation from the failed automatic segmentation to its corresponding correct segmentation. An optimization procedure was used to minimize an energy function that consists of two terms, an external contour match term and an internal shape change regularity term. The high accuracy of the proposed segmentation editing approach was confirmed by testing it on a simulated data set based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. Segmentation results indicated that our method can provide efficient and adequately accurate segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 10%), which is promising in greatly decreasing the work expected from the user.
منابع مشابه
PedCut: an iterative framework for pedestrian segmentation combining shape models and multiple data cues
Person segmentation is a key computer vision problem in a number of application domains, such as image editing, surveillance and intelligent vehicles. This paper presents an iterative, EM-like framework for accurate pedestrian segmentation, combining generative shape models and multiple data cues. It is able to cope with a large variation of pedestrian appearances across cluttered backgrounds. ...
متن کاملLaplacian Shape Editing with Local Patch Based Force Field for Interactive Segmentation
Segmenting structure-of-interest is a fundamental problem in medical image analysis. Numerous automatic segmentation algorithms have been extensively studied for the task. However, misleading image information and the complex organ structures with high curvature boundaries may cause underor over-segmentation for the deformable models. Learning based approaches can alleviate this issue, while th...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملNonlinear Shape Statistics in Mumford-Shah Based Segmentation
We present a variational integration of nonlinear shape statistics into a Mumford–Shah based segmentation process. The nonlinear statistics are derived from a set of training silhouettes by a novel method of density estimation which can be considered as an extension of kernel PCA to a stochastic framework. The idea is to assume that the training data forms a Gaussian distribution after a nonlin...
متن کاملSIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of SPIE--the International Society for Optical Engineering
دوره 10133 شماره
صفحات -
تاریخ انتشار 2017